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Abstract. A fixed point theorem for directional multi-valued kð�Þ-contractions acting in a
complete metric space is established which extends similar results both for kð�Þ-contractions
and directional contractions. Such theorem enables to obtain fixed points theorems for the

former class of set-valued maps from those valid for the latter one without metrical convexity
or proximinality assumptions, thereby contributing to unify the current setting of the theory.
Connections with several recent advances on this subject are also examinated.
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1. Introduction

Fixed point theory, as a relevant topic both in pure and applied mathemat-
ics, is a flourishing branch of nonlinear analysis with many directions of
development.
The present work is focused on fixed point theory for contractive maps

in the metric space setting. Within such context, the development of the
theory in the last decades witnessed, among many others, two fundamental
advances that in turn stimulated a good deal of recent investigations on
the subject. The first one is the extension of the celebrated Banach contrac-
tion principle to multi-valued maps, known as Nadler fixed point theorem
(see [10, 15, 17]), that put to the center of this kind of researches set-valued
maps, a tool which, despite its utility, was not yet adequately considered.
Subsequently, in [18] some fixed point results were achieved which took
under examination multi-valued maps with variable contraction factors,
thereby extending analogous results for single-valued maps (see [6]). This
second advance phase culminated with the Reich’s conjecture (still now not
completely answered) asking whether, in force of a rather general lim sup
condition on the contraction factor (as a function of distance), the com-
pactness hypothesis on the values taken by a multi-valued contraction
could be relaxed (see [19]). Recent attempts to drop out such compactness
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hypothesis led to modify the lim sup condition, by making it stronger (see
[7, 11, 12, 16]).
Another direction of research (see [20]) led to extend to the set-valued

map setting a previous fixed point result valid for single-valued maps (see
[8, 9, 14]) with only directional contraction properties. Recently, in [22]
such investigations were refined by some new achievement and it was
shown that several already existent results, even relating to classic (not
directional) contractive maps, could be improved via this approach.
The present paper intends to carry on such development of the theory

by examinating directional multi-valued contractions with variable contrac-
tion factor. Thus the two mentioned lines of current investigations are, to
some extent, unified. In this spirit, a fixed point theorem is presented which
extends both the ones in [20, 22] and other theorems obtained in [11, 16].
Other connections with related results are also examinated.
A remarkable feature of the issue is that, as it happens for many exis-

tence questions in nonlinear analysis, fixed points are obtained as a global
minimum point for proper perturbations of the displacement function asso-
ciated to a map, emphasizing the variational aspect of the problem. This
fact must be not surprising in as much as it is well known that fixed point
theory and optimization are connected by close relationships. This intrigu-
ing link appeared in all its profundity when the Ekeland variational princi-
ple (here the main tool of analysis, along with some its variant) and the
Caristi fixed point theorem were proved both to be equivalent formulations
of completeness for a metric space (see [5]). In the same vein, more recently
the mentioned variational principle has been reformulated as an existence
result for global minima in the Takahashi theorem (see [23]).

2. Directional Multi-valued kð�Þ-Contractions
Throughout the paper ðE; dÞ denotes a metric space, whereas the class of
all its nonempty closed and bounded subsets is denoted by CBðEÞ. Rþ is
the set of all nonnegative real numbers. In order to introduce multi-valued
contractions one needs the Hausdorff metric H : CBðEÞ � CBðEÞ �! Rþ
induced by d over CBðEÞ. namely, given a pair A, B of elements of CBðEÞ,
HðA;BÞ ¼ maxfHþðA;BÞ;HþðB;AÞg, where

HþðA;BÞ ¼ sup
b2B

dðb;AÞ ¼ sup
b2B

inf
a2A

dðb; aÞ:

Nonetheless, to present results in their full generality, instead of H merely
Hþ will be mainly used in the sequel. Given any pair x and y of distinct
points of E, by �x; y½ the set will be denoted consisting of all the points
z 2 E n fx; yg such that dðx; zÞ þ dðz; yÞ ¼ dðx; yÞ.
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REMARK 2.1. It is not difficult to show that, given any pair A;B 2 CBðEÞ
and any x 2 E, it holds dðx;BÞOdðx;BÞ þHþðA;BÞ.
Following an already proposed scheme of analysis (see, for instance, [8,

9, 13]), existence of fixed points will be investigated by means of a varia-
tional approach. More precisely, they will be obtained as a global mini-
mum point for certain perturbations of the so called ‘‘displacement
function’’ associated to a multi-valued contraction. To this end, the follow-
ing lemma, whose proof can be easily drawn by a perusal of the proof of
Theorem 2.1 in [24], will be of use.

LEMMA 2.1. Let K be a closed subset of E. If a multi-valued map
F : K �! CBðEÞ is upper semicontinuous ðfor short, u.s.c.Þ; then its displace-
ment function f :K �! Rþ defined by fðxÞ ¼ dðx;FðxÞÞ, is lower semicontinu-
ous ðfor short, l.s.c.).

The notion of upper semicontinuity is, of course, the usual one for set-val-
ued maps (as one reads e.g. in [2]).
The next definition introduces to the notion which plays the major role

in this section.

DEFINITION 2.1. Let K � E. A map F : K! CBðEÞ is called a directional
multi-valued kð�Þ-contraction if there exists a 2 ð0; 1�; a : ð0;þ1Þ ! ½a; 1� and
k : ð0;þ1Þ ! ½0; 1Þ such that for every x 2 K, with x 62 FðxÞ, there is
y 2 K n fxg satisfying the inequalities

aðdðx; yÞÞdðx; yÞ þ dðy;FðxÞÞOdðx;FðxÞÞ
and

HþðFðyÞ;FðxÞÞOkðdðx; yÞÞdðx; yÞ:

It is clear that such class includes in particular maps F for which the sec-
ond inequality in Definition 2.1 is satisfied with HþðFðyÞ;FðxÞÞ replaced by
HðFðyÞ;FðxÞÞ.
EXAMPLE 2.1. Let E ¼ ½0; 1� � ½0; 1� and let Q denote the set of all rational
numbers. Consider the metric space ðE; dÞ, where d denotes the Euclidean
distance, and the map F : E! CBðEÞ (actually single-valued) defined by

Fðxl;x2Þ ¼
ð1; 1Þ; if ðx1; x2Þ 2 E \ ðQ�QÞ;
ð0; 0Þ; otherwise.

�

The map F satisfies Definition 2.1 with a ¼ 1, a � 1 and k � 0. Indeed,
without difficulty one sees that for any point ðx1; x2Þ 2 E \ ðQ�QÞn
fð1; 1Þg the line segment connecting ðx1;x2Þ with ð1; 1Þ ¼ Fðx1;x2Þ contains
a point ðy1; y2Þ 2 E \ ðQ�QÞ n fðx1; x2Þ; ð1; 1Þg, so that it holds

dððx1; x2Þ; ðy1; y2ÞÞ þ dððy1; y2Þ; ð1; 1ÞÞ ¼ dððx1; x2Þ;Fðx1;x2ÞÞ
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and dðFðy1; y2Þ;Fðx1; x2ÞÞ ¼ 0. Analogously, for any point ðx1;x2Þ 2
E n ðQ�QÞ, the line segment connecting ðx1; x2Þ with ð0; 0Þ ¼ Fðx1; x2Þ
contains a point ðy1; y2Þ 2 E n ððQ�QÞ [ fðx1; x2ÞgÞ, so that it holds

dððx1; x2Þ; ðy1; y2ÞÞ þ dððy1; y2Þ; ð0; 0ÞÞ ¼ dððx1; x2Þ;Fðx1;x2ÞÞ
and dðFðy1; y2Þ;Fðx1;x2ÞÞ ¼ 0. Nonetheless, F fails clearly to be a metric
contraction of E.

The main theorem of the paper is stated below.

THEOREM 2.1. Let K be a closed nonempty subset of a complete metric space
ðE; dÞ and let F :K! CBðEÞ be an u.s.c. directional multi-valued kð�Þ-con-
traction. Assume that there exist x0 2 K and d > 0 such that dðx0;Fðx0ÞÞOad
and

sup
t2ð0;d�

kðtÞ < inf
t2ð0;d�

aðtÞ;

where a 2 ð0; 1�, a and k are the constant and the functions occuring in the
definition of directional multi-valued kð�Þ-contraction. Then F admits a fixed
point.

Proof. By hypothesis, there exists b > 0 and d > 0 such that
sup
t2ð0;d�

½kðtÞ � aðtÞ�O sup
t2ð0;d�

kðtÞ � inf
t2ð0;d�

aðtÞO� b: ð1Þ

Since F is u.s.c., the displacement function f : K! Rþ associated to F is
l.s.c. in K, according to Lemma 2.1. Since K is complete if equipped with
the metric induced by d, and fðx0ÞOad, then it is possible to apply the Eke-
land variational principle (see, for instance, [13]) around x0, to get for any
k > 0 the existence of xk 2 K such that fðxkÞOfðx0Þ and

fðxkÞ < fðxÞ þ ad
k
dðxk;xÞ; 8x 2 K n fxkg: ð2Þ

Suppose ab absurdo that fðxkÞ > 0 for every k > 0. Take k ¼ 2ad
b . Since F is

a directional multi-valued kð�Þ-contraction, according to Definition 2.1
there exists y 2 K n fxkg satisfying the inequalities

aðdðxk; yÞÞdðxk; yÞ þ dðy;FðxkÞÞOfðxkÞ; ð3Þ
and

HþðFðyÞ;FðxkÞÞOkðdðxk; yÞÞdðxk; yÞ:
From inequality (3), being aOaðdðxk; yÞÞ, it follows

dðxk; yÞOa�1fðxkÞOa�1fðx0Þ;
so 0 < dðxk; yÞOd, Moreover, one has

dðy;FðxkÞÞO fðxkÞ � aðdðxk; yÞÞdðxk; yÞ:
In the light of Remark 2.1, from the last inequality one obtains

fðyÞOdðy;FðxkÞÞ þHþðFðyÞ;FðxkÞÞ
O fðxkÞ þ ½kðdðxk; yÞÞ � aðdðxk; yÞÞ�dðxk; yÞ:
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Putting x ¼ y in inequality (2) and taking into account inequality (1) along
with 0 < dðxk; yÞOd, one finds

fðxkÞ < fðyÞ þ ad
2ad
b

dðxk; yÞ

OfðxkÞ þ ½kðdðxk; yÞÞ � aðdðxk; yÞÞ� þ
b
2

� �
dðxk; yÞ

OfðxkÞ �
b
2
dðxk; yÞ < fðxkÞ;

which yields an absurdum. Therefore it must be fðxkÞ ¼ 0 and this com-
pletes the proof. (

REMARK 2.2. Notice that the contractive condition kð�Þ < 1, according to
Definition 2.1, plays an essential role in Theorem 2.1, so the latter one cannot
be extended to merely directional multi-valued Lipschitz maps. Indeed, the
first inequality to be satisfied in Definition 2.1, along with the triangle
inequality, forces aðdðx; yÞÞO1. Therefore, the condition supt2ð0;d� kðtÞ <
inf t2ð0;d� aðtÞ entails kðtÞ < 1 for every t 2 ð0; d�.
In order to draw a straightforward consequence of Theorem 2.1, that

will serve to put it in comparison with other similar results, let us recall
that a map F :K! CBðEÞ is said to have the almost fixed point property
in K provided that infx2K dðx;FðxÞÞ ¼ 0.

COROLLARY 2.1. Let ðE; dÞ be a complete metric space and let K � E be
closed and nonempty. If an u.s.c. directional multi-valued kð�Þ-contraction
satisfies the condition

ðCÞ lim sup
s!0þ

kðsÞ < lim inf
s!0þ

aðsÞ;

and it has the almost fixed point property in K, then it admits a fixed point
ðin K ).

Proof. Observe that condition (C) implies the existence of d1 > 0 and d2 > 0
such that

sup
ð0;d1�

kðsÞ < inf
ð0;d2�

aðsÞ;

so that it suffices to take d ¼ minfd1; d2g to get satisfied the related in equal-
ity in the hypothesis of Theorem 2.1. Besides, since inf x2K fðxÞ ¼ 0, there
exists a proper x0 2 K such that fðx0ÞOad. (

Theorem 2.1 extends the fixed point theorem that was recently estab-
lished in [22] for directional multi-valued contractions with constant con-
traction factor k and a. Indeed, in such event, it results a � aO1 and k < a
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independently on t, so that it is always possible, taken an arbitrary x0 2 K,
to find a proper d > 0 such that dðx0;Fðx0ÞÞOad.

REMARK 2.3. Whereas for multi-valued kð�Þ-contractions (see Section 3)
the hypothesis of Theorem 2.1 about upper semicontinuity of F would be
redundant whenever Hþ could be replaced by H (in such event f turns out to
be Lipschitz continuous), for directional multi-valued kð�Þ-contractions such
hypothesis seems essential even when Definition 2.1 is satisfied with
Hþ replaced by H. However, according to the proof of Theorem 2.1 the role
of upper semicontinuity consists only in ensuring f to be l.s.c. and therefore
such hypothesis can be replaced with any other forcing the same property on
the displacement function.1

Within the proposed approach it is possible also to derive a fixed point
result for multi-valued contractions having a variable contractive behavior,
which is locally described by a condition expressed in terms of a properly
defined directional derivative.
Let a closed subset K � E, a set-valued map F :K! CBðEÞ, a pair of ele-

ments x 2 K and z 2 E be given. Then the value

DF#ðx; zÞ ¼
0; if z ¼ x,
þ1; if �x; z½\K ¼ ;,
inf y2�x;z½\K

HþðFðyÞ;FðxÞÞ
dðy;xÞ if �x; z½\K 6¼ ;

8<
:

will be called weak directional derivative of F at x in the direction z. This
kind of derivative (with H instead of Hþ), firstly employed in [20] in con-
nection with fixed point theory, minorizes the directional derivative
DFðx ; zÞ proposed in [8] for the single-valued case, so that it allows to
achieve sharper results.
In view of the next statement, let us recall that a set A � E is called

proximinal provided that for every x 2 E there exists a 2 A such that
dðx; aÞ ¼ dðx;AÞ. The set consisting of all such a 2 A will be indicated
henceforth by Pðx;AÞ. For instance, any nonempty closed convex subset
of a reflexive Banach space is proximinal.

THEOREM 2.2. Let ðE; dÞ be a complete metric space, let K be a closed subset
of E and let F : K! CBðEÞ be an u.s.c. map taking proximinal values. If there
exists r 2 ð0; 1Þ such that for each x 2 K, with x 62 FðxÞ,

inf
z2Pðx;FðxÞÞ

DF#ðx; zÞOr;

then F admits a fixed point.

1In several formulations of fixed point theorems f is directly assumed to be l.s.c. (see, for instance,

[20]).
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Proof. It suffices to note that under the above assumptions map F is a
directional multi-valued kð�Þ-contraction in the sense of Definition 2.1.
Indeed, for each x 2 K, with x 62 FðxÞ, there is z 2 Pðx;FðxÞÞ such that
DF#ðx; zÞO 1

2 ðrþ 1Þ and, consequently, there is y 2�x; z½\K such that
dðx; yÞ þ dðy;FðxÞÞOdðx; yÞ þ dðy; zÞ ¼ dðx;FðxÞÞ and HþðFðyÞ;FðxÞÞO
rþ3
4 dðx; yÞ. So, F fulfills Definition 2.1 with a � a ¼ 1 and k ¼ rþ3

4 . Besides,
since k is a constant less than 1, then taken an arbitrary x0 2 K there is no
difficulty in finding d > 0 in such a way that all the hypotheses of Theorem
2.1 are fulfilled. (

It may be worth noticing that from Theorem 2.2 one can derive also the
set-valued extension presented in [20] of an earlier fixed point theorem for
directional contractions in the Banach space setting due to Kirk and Ray
(see [14]).

3. Some Related Results

Let us recall that a map F : E! CBðEÞ is said to be a multi-valued kð�Þ-
contraction if there exists k : ð0;þ1Þ ! ð0; 1Þ such that for every x 62 FðxÞ
and for every y 2 FðxÞ it holds

HþðFðyÞ;FðxÞÞOkðdðx; yÞÞdðx; yÞ:
Under a rather general condition on contraction factor kð�Þ the next propo-
sition, which is a slight refinement of Lemma 1 in [21] and is fully proved
here for the sake of completeness, shows that multi-valued kð�Þ-contrac-
tions have the almost fixed point property.

PROPOSITION 3.1. If a multi-valued kð�Þ-contraction F has a factor kð�Þ
satisfying the condition

ðRÞ lim sup
s!tþ

kðsÞ < 1; 8t 2 ð0;þ1Þ;

then F has the almost fixed point property.

Proof. Take arbitrarily x0 2 E and x1 2 Fðx0Þ. If x1 ¼ x0, the thesis is trivi-
ally verified. Otherwise, it is possible to contruct inductively a sequence
ðxnÞn2N in E such that xnþ1 2 FðxnÞ and dn ¼ dðxnþ1;xnÞ is decreasing.
Indeed, setting d0 ¼ dðx0;x1Þ, since it is

sup
x2Fðx0Þ

dðx;Fðx1ÞÞOkðd0Þd0 <
1

2
ð1þ kðd0ÞÞd0 < d0;

then dðx1;Fðx1ÞÞ < 1
2 ð1þ kðd0ÞÞd0 and hence it is possible to find

x2 2 Fðx1Þ such that dðx2;x1Þ < 1
2 ð1þ kðd0ÞÞd0. By proceeding in this vein,

set d1 ¼ dðx2; x1Þ, since it is

sup
x2Fðx1Þ

dðx;Fðx2ÞÞOkðd1Þd1 <
1

2
ð1þ kðd1ÞÞd1 < d1;

FIXED POINTS FOR DIRECTIONAL MULTI-VALUED kð�Þ-CONTRACTIONS 461



then dðx2;Fðx2ÞÞO 1
2 ð1þ kðd1ÞÞd1 so one gets the existence of x3 2 Fðx2Þ

such that dðx3; x2Þ < 1
2 ð1þ kðd1ÞÞd1. Observe that, letting d2 ¼ dðx3;x2Þ,

one has

d2 <
1

2
ð1þ kðd1ÞÞd1 < d1 <

1

2
ð1þ kðd0ÞÞd0 < d0:

Thus, by induction, one obtains a strictly decreasing sequence ðdnÞn2N, with
dn ¼ dðxnþ1; xnÞ and xnþ1 2 FðxnÞ. To prove the thesis one needs to show
that l ¼ limn!1 dn (which exists by monotonicity) reduces to 0. Assume to
the contrary that l > 0. From the inequality

2dnþ1 < ð1þ kðdnÞÞdn;
which holds by induction for every n 2 N, one obtains passing to the
limsup as n!1

2lOð1þ lim sup
s!lþ

kðsÞÞl < 2l;

which leads to an absurdum. Thus it must be l ¼ 0. As
dðxn;FðxnÞÞOdðxn;xn þ 1Þ, it follows

inf
x2E

dðx;FðxÞÞ ¼ lim
n!1

dðxn;FðxnÞÞ ¼ 0;

which completes the proof. (

Notice that in the above result the metric space ðE; d Þ needs not be com-
plete. Besides, F needs not be u.s.c., in contrast to the statement of Lemma
1 in [21], where the use of the Hausdorff metric leads to deal with u.s.c.
maps only. Below Proposition 3.1 is employed to derive, within the pro-
posed approach, a fixed point theorem which was established in order to
answeiuthe Reich’s conjecture.2

THEOREM 3.1. (Mizoguchi–Takahashi) Let ðE; dÞ be a complete metric
space and let F : E! CBðEÞ be an u.s.c. multi-valued kð�Þ-contraction. If kð�Þ is
a function such that lim sups!tþ kðsÞ < 1 for every t 2 ½0;þ1Þ, then F admits a
fixed point.

Proof. Since F is a kð�Þ-contraction whose contraction factor satisfies, in
particular, condition ðRÞ, by virtue of Proposition 3.1 F has the almost
fixed point property. Moreover, by hypothesis, there exists a > 0 such that
lim sups!0þ kðsÞ < a < 1. Given x 62 FðxÞ, it is thereby possible to find
y 2 FðxÞ such that

dðx; yÞO dðx;FðxÞÞ
a

;

2As remarked clearly in [12, 21], the Reich’s conjecture still remains unanswered in its original

formulation, because the contraction factor kð�Þ should be supposed to satisfy only condition (R), unlike in

the statement of Theorem 3.1.
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so adðx; yÞ þ dðy;FðxÞÞOdðx;FðxÞÞ. It remains to apply Corollary 2.1 with
K ¼ E and a � a. (

As one observes at once, Theorem 3.1 encompasses Theorem 1.2 of [11]
in which instead of the lim sup condition one finds the increasing monoto-
nicity of kð�Þ over ð0;þ1Þ as an hypothesis.
It is worth observing that the above stated version of the Mizoguchi-Ta-

kahashi fixed point theorem, unlike the original one (see [11, 16]), does not
require a contractive behavior of F also for pairs x; y 2 E such that
y 62 FðxÞ.
REMARK 3.1. Notice that Theorem 3.1 has been obtained by Corollary 2.1
without invoking any metrical convexity assumption on the space ðE; dÞ. Let
us recall that a metric space ðE; dÞ is called metrically convex, according to [4],
provided that for any pair x; y of distinct elements of E, the subset �x; y½ of E

is nonempty. A special class of metrically convex metric spaces is that of
uniformly Lipschitz-connected metric spaces of rank 1, which was involved in
fixed point theory already in [5]. The latter class includes, in particular, all
normed spaces.
It is clear that any multi-valued kð�Þ-contraction F fulfills automatically

Definition 2.1 whenever ðE; dÞ is metrically convex and F takes proximinal
values. Therefore, in such setting. Theorem 3.1 becomes a straightforward
consequence of Corollary 2.1. In a similar manner, Banach and Nadler
fixed point theorems have been distilled in the same setting from corre-
sponding fixed point results valid for directional (single and set-valued,
respectively) contractions. Nevertheless Theorem 2.1 shows that this can be
done without invoking metrical convexity and proximinality assumptions,
emphasizing the unifying role of directional contractions.
In the next example a map is exhibited which satisfies Definition 2.1 but

is defined in a non metrically convex metric space.

EXAMPLE 3.1. Let L� and Lþ denote the two closed line segments in the
Euclidean plane R2 connecting (�1, 0) with (0, 1), and (0, 1) with (12, 0),
respectively. Letting E ¼ L [ Lþ, consider the metric space ðE; dÞ, where d
denotes the Euclidean distance, and the map F :E! CBðEÞ (actually single-
valued) defined by

Fðx1;x2Þ ¼
ðx1; x2Þ; if xP0,
� x1

2 ; x2
� �

; otherwise .

�

F is not a metric contraction of E because all points in Lþ are fixed points
for F. Let us show that F satisfies Definition 2.1 with a ¼ 3�

ffiffi
5
p

2
ffiffi
2
p , a � a and

k �
ffiffi
5
p

2
ffiffi
2
p . Take an arbitrary point x ¼ ðx1;x2Þ 2 L� n fð0; 1Þg (points in Lþ

are not to be considered) and y ¼ ð0; 1Þ. One has
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dðx; yÞ ¼
ffiffiffi
2
p
jx1j; dðy;FðxÞÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ � x1

2

� �2r
¼

ffiffiffi
5
p

2
jx1j;

and dðx;FðxÞÞ ¼ 3
2 jx1j, so

3�
ffiffiffi
5
p

2
ffiffiffi
2
p

ffiffiffi
2
p
jx1j þ

ffiffiffi
5
p

2
jx1jO

3

2
jx1j:

On the other hand, it results in

dðFðyÞ;FðxÞÞ ¼ dðy;FðxÞÞ ¼
ffiffiffi
5
p

2
jx1jO

ffiffiffi
5
p

2
ffiffiffi
2
p dðx; yÞ:

Notice that the space ðE; dÞ is not metrically convex.

In view of further developments of the theory, it is worth mentioning
that the scheme of analysis, by which the main theorem in Section 2 has
been established, can be adapted in such a way to afford a directional
counterpart of Theorem 1 in [16].

THEOREM 3.2. Let ðE; dÞ be a complete metric space, K � E be closed and
nonempty, and let F :K�E be a set-valued map with nonempty closed values.
Assume that there are a constant L > 0, a proper ði.e. not identically þ1Þ
bounded below l.s.c. function w :K! ð�1;þ1�, a function q : ð0;þ1Þ ! R,
and a function p : ½0;þ1Þ ! ð0;þ1Þ with the property

inf
s2ð0;L�

pðsÞ > 0;

such that for each x 2 K, with x 62 FðxÞ, there exists y 2 ðK \ BLðxÞÞ n fxg
satisfying the inequalities

qðdðx; yÞÞdðx; yÞ þ dðy;FðxÞÞOwðxÞ ð4Þ
and

wðyÞ þ pðdðx; yÞÞdðx; yÞOwðxÞ: ð5Þ
Then F has a fixed point.

Proof. Observe first that, without loss of generality, function w can be assumed
to be nonnegative. Then the proof follows essentially the same lines as for The-
orem 2.1. Taken an arbitrary point x0 2 K and � > fðx0Þ, it is possible to apply
the Ekeland variational principle to function w, getting a global minimum
xk 2 K for the �

k perturbation of w. Ab absurdo, assume that wðxkÞ > 0 for
every k > 0. Set p0 ¼ inf s2ð0;L� pðsÞ and k ¼ 2�

p0
. Since corresponding to xk there

is y 2 ðK \ BLÞ n fxkg fulfilling inequality (5), one obtains

wðxkÞ < wðyÞ þ �
k
dðxk; yÞOwðxkÞ þ

�

k
� pðdðxk; yÞÞ

h i
dðxk; yÞ

OwðxkÞ �
p0
2
dðxk; yÞ < wðxkÞ

which, because of the nonnegativity assumption on w, forces wðxkÞ ¼ 0.
This fact, taking into account inequality (5), gives dðxk; yÞ ¼ 0 and the last
equality, along with inequality (4), entails xk ¼ y 2 FðxkÞ. Thus the proof
is complete. (
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Another recent generalization of the notion of metric contraction
appeared in [1] under the name of weakly contractive map. The next defini-
tion can be regarded as a directional variant for the set-valued version of
such notion, which was considered in [3].

DEFINITION 3.1. Let K � E. A map F :K! CBðEÞ is called directionally
weakly contractive if there exists a 2 ð0; 1�; a : ð0;þ1Þ ! ½a; 1� and
/ : ð0;þ1Þ ! ð0;þ1Þ, with /ðtÞOt, such that for every x 62 FðxÞ, there is
y 2 K n fxg satisfying the inequalities

aðdðx; yÞÞdðx; yÞ þ dðy;FðxÞÞOdðx;FðxÞÞ
and

HþðFðyÞ;FðxÞÞOdðx; yÞ � /ðdðx; yÞÞ:
This class of generalized multi-valued contractions can be embedded in the
proposed theory inasmuch as it is a subclass of that of directional multi-
valued kð�Þ-contractions.
THEOREM 3.3. Let K be a closed nonempty subset of a complete metric space
ðE; dÞ and let F :K! CBðEÞ be an u.s.c. directionally weakly contractive map.
Suppose that

lim sup
s!0þ

s

/ðsÞ <
þ1; if 9d > 0 : aðsÞ ¼ 1;8s 2 ð0; d�,
lim inf s!0þ

1
1�aðsÞ ; otherwise ,

�

where / and a are the functions occuring in the definition of directionally
weakly contractive map. If F has the almost fixed point property in K, then F
admits a fixed point ðin KÞ.
Proof. Set kðtÞ ¼ 1� t�l/ðtÞ, for t > 0. Since 0 < /ðtÞOt, then
k : ð0;þ1Þ ! ½0; 1Þ. Thus F is a directional multi-valued kð�Þ-contraction
fulfilling condition (C). Indeed, in the case in which there is d > 0 such that
aðsÞ ¼ 1 for every s 2 ð0; d�, or in which lim inf s!0þ

1
1�aðsÞ ¼ þ1, then by

the hypothesis lim sups!0þ
s

/ðsÞ < þ1 one has

lim sup
s!0þ

kðsÞ ¼ 1� lim inf
s!0þ

/ðsÞ
s
¼ 1� 1

lim sups!0þ
s

/ðsÞ
< 1

¼ lim inf
s!0þ

aðsÞ:

Otherwise, if lim inf s!0þ
1

1�aðsÞ < þ1, one has

lim sup
s!0þ

kðsÞ ¼ 1� lim inf
s!0þ

/ðsÞ
s
¼ 1� 1

lim sups!0þ
s

/ðsÞ
< 1

� 1

lim inf s!0þ
1

1�aðsÞ
¼ lim inf

s!0þ
aðsÞ:

So, in any case it holds lim sups!0þ kðsÞ < lim inf s!0þ aðsÞ. Thus the thesis
follows from Corollary 2.1. (
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For weakly contractive maps as defined in [3], i.e. for set-valued maps
F :E! CBððEÞ for which there exists / : ½0;þ1Þ ! ½0;þ1Þ, with /ð0Þ ¼ 0
and 0 < /ðtÞOt whenever t 2 ð0;þ1Þ, such that

HþðFðyÞ;FðxÞÞOdðx; yÞ � /ðdðx; yÞÞ; 8x; y 2 E; ð6Þ
one can derive a generalization of Theorem 3.1 in [3] as an easy conse-
quence of the Mizoguchi–Takahashi theorem.

COROLLARY 3.1. Let ðE; dÞ be a complete metric space and let
F : E! CBðEÞ be an u.s.c. weakly contractive set-valued map, for which
function / occuring in the related definition is l.s.c. from the right and� satisfies

lim sup
s!0þ

s

/ðsÞ < þ1:

Then F has a fixed point.

Proof. In a similar manner as in the proof of Theorem 3.3, one sees that F
is a multi-valued kð�Þ-contraction, with kðtÞ ¼ 1� t�1/ðtÞ. Since by
assumption function t 7! t�1/ðtÞ is l.s.c. from the right and / takes positive
values on ð0;þ1Þ, one obtains

lim sup
s!tþ

kðsÞ ¼ 1� lim sup
s!tþ

/ðsÞ
s

< 1� /ðtÞ
t

< 1; 8t 2 ð0;þ1Þ:

Moreover, being lim sups!0þ
s

/ðsÞ < þ1 one has

lim sup
s!tþ

kðsÞ < 1; 8t 2 ½0;þ1Þ:

It is therefore possible to apply Theorem 3.1 to get the thesis. (

REMARK 3.2. The upper semicontinuity assumption on map F not
appearing in Theorem 3.1 in [3] is due to the use of Hþ instead of the
Hausdorff metric H in (6).
In [24] multi-valued contractions were considered with a contraction fac-

tor kð�Þ expressible as a certain function of the distance from an assigned
point. For such kind of multi-valued contractions a fixed point theorem
extending the Nadler’s one was proved relying on a proper generalization of
the Ekeland variational principle, previously established. Then, by exploit-
ing the same technique, the authors were enabled to provide a sort of ‘‘direc-
tional variant’’ of their main result (namely, Theorem 2.4 in [24]). In such
variant map F is assumed to take compact (and therefore proximinal) values
and to satisfy a directional contraction property that is typically fulfilled by
multi-valued contractions acting in metrically convex spaces. Following the
lines of the proposed approach, the next result is a generalization of the
above mentioned directional theorem avoiding such kind of assumptions.

THEOREM 3.4. Let K be a nonempty closed subset of a complete metric space
ðE; dÞ. Let x0 2 E be an assigned point and r 2 ð0; 1� be a constant. Let
F :K! CBðEÞ be an u.s.c. map and let h : ½0;þ1Þ ! ½0;þ1Þ be a continuous
nondecreasing function such that
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Z þ1
0

dt

1þ hðtÞ ¼ þ1

Suppose that there exists a function a : ð0;þ1Þ ! ð0; 1�, with
aðtÞ > 1� r

M½1þ hðtÞ� ; 8t 2 ð0;þ1Þ

for some M > 1, and that for every x 2 K, with x j2FðxÞ, there exists
y 2 K n fxg such that

aðdðx0;xÞÞdðx; yÞ þ dðy;FðxÞÞOdðx;FðxÞÞ
and

HþðFðyÞ;FðxÞÞO 1� r
1þ hðdðx0; xÞÞ

� 	
dðx; yÞ:

Then F admits a fixed point ðin K Þ.
Proof. Let f :K! Rþ be the displacement function associated to F. f is
l.s.c. because F is u.s.c. Take x1 2 K and d > fðx1Þ. Since ðK; dÞ is complete
and fðx1Þ < infx2KfðxÞ þ d, it is possible to apply Lemma 1.1 [24], accord-
ing to which for every k > 0 there exists xk 2 K such that

fðxkÞOfðxÞ þ d
k½1þ hðdðx0; xkÞÞ�

dðx; xkÞ; 8x 2 K: ð7Þ

Assume, ab absurdo, that fðxkÞ > 0 for every k > 0, and take k ¼ Md
rðM�1Þ.

By hypothesis there exists y 2 Knfxkg satisfying the following inequalities

aðdðx0;xkÞÞdðxk; yÞ þ dðy;FðxkÞÞOfðxkÞ
and

HþðFðyÞ;FðxkÞÞO 1� r
1þ hðdðx0; xkÞÞ

� 	
dðxk; yÞ:

By exploiting the two last inequalities, one obtains

fðyÞOdðy;FðxkÞÞ þHþðFðyÞ;FðxkÞÞ

OfðxkÞ þ 1� r
1þ hðdðx0;xkÞÞ

� aðdðx0;xkÞÞ
� 	

dðxk; yÞ:

In force of such inequality, choosing x ¼ y in (7) and replacing k with the
taken value, one finds

fðxkÞOfðxkÞ þ 1� r
1þ hðdðx0;xkÞÞ

� aðdðx0;xkÞÞ
� 	

dðxk; yÞ

þ d
Md

rðM�1Þ ½1þ hðdðx0; xkÞÞ�
dðxk; yÞ

OfðxkÞ þ 1� r
M½1þ hðdðx0; xkÞÞ�

� aðdðx0; xkÞÞ
� �

dðxk; yÞ

< fðxkÞ
which leads to an absurdum. This completes the proof. (
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